Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(11): 12622-12634, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524461

RESUMO

The rising risks of food microbial contamination and foodborne pathogens resistance have prompted an increasing interest in natural antimicrobials as promising alternatives to synthetic antimicrobials. Essential oils (EOs) obtained from natural sources have shown promising anticancer, antimicrobial, and antioxidant activities. EOs extracted from the resins of Pistacia lentiscus var. Chia are widely utilized for the treatment of skin inflammations, gastrointestinal disorders, respiratory infections, wound healing, and cancers. The therapeutic benefits of P. lentiscusessential oils (PO) are limited by their low solubility, poor bioavailability, and high volatility. Nanoencapsulation of PO can improve their physicochemical properties and consequently their therapeutic efficacy while overcoming their undesirable side effects. Hence, PO was extracted from the resins of P. lentiscusvia hydrodistillation. Then, PO was encapsulated into (2-hydroxypropyl)-beta-cyclodextrin (HPßCD) via freeze-drying. The obtained inclusion complexes (PO-ICs) appeared as round vesicles (22.62 to 63.19 nm) forming several agglomerations (180 to 350 nm), as detected by UHR-TEM, with remarkable entrapment efficiency (89.59 ± 1.47%) and a PDI of 0.1475 ± 0.0005. Furthermore, the encapsulation and stability of PO-ICs were confirmed via FE-SEM, 1H NMR, 2D HNMR (NOESY), FT-IR, UHR-TEM, and DSC. DSC revealed a higher thermal stability of the PO-ICs, reaching 351.0 °C. PO-ICs exerted substantial antibacterial activity against Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli as compared to free PO. PO-ICs showed significant enhancement in the antibacterial activity of the encapsulated PO against S. aureus with an MIC90 of 2.84 mg/mL and against P. aeruginosa with MIC90 of 3.62 mg/mL and MIC50 of 0.56 mg/mL. In addition, PO-ICs showed greater antimicrobial activity against E. coli by 6-fold with an MIC90 of 0.89 mg/mL, compared to free PO, which showed an MIC90 of 5.38 mg/mL. In conclusion, the encapsulation of PO into HPßCD enhanced its aqueous solubility, stability, and penetration ability, resulting in a significantly higher antibacterial activity.

2.
Discov Nano ; 19(1): 27, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353827

RESUMO

Chemoresistance and severe toxicities represent major drawbacks of chemotherapy. Natural extracts, including the essential oils of Pistacia lentiscus (PLEO), exhibit substantial anticancer and anti-inflammatory activities where different cancers are reported to dramatically recess following targeting with PLEO. PLEO has promising antimicrobial, anticancer, and anti-inflammatory properties. However, the therapeutic properties of PLEO are restricted by limited stability, bioavailability, and targeting ability. PLEO nanoformulation can maximize their physicochemical and therapeutic properties, overcoming their shortcomings. Hence, PLEO was extracted and its chemical composition was determined by GC-MS. PLEO and 5-Fluorouracil (5FU) were electrospun into poly-ε-caprolactone nanofibers (PCL-NFs), of 290.71 nm to 680.95 nm diameter, to investigate their anticancer and potential synergistic activities against triple-negative breast cancer cells (MDA-MB-231), human adenocarcinoma breast cancer cells (MCF-7), and human skin melanoma cell line (A375). The prepared nanofibers (NFs) showed enhanced thermal stability and remarkable physical integrity and tensile strength. Biodegradability studies showed prolonged stability over 42 days, supporting the NFs use as a localized therapy of breast tissues (postmastectomy) or melanoma. Release studies revealed sustainable release behaviors over 168 h, with higher released amounts of 5FU and PLEO at pH 5.4, indicating higher targeting abilities towards cancer tissues. NFs loaded with PLEO showed strong antioxidant properties. Finally, NFs loaded with either PLEO or 5FU depicted greater anticancer activities compared to free compounds. The highest anticancer activities were observed with NFs co-loaded with PLEO and 5FU. The developed 5FU-PLEO-PCL-NFs hold potential as a local treatment of breast cancer tissues (post-mastectomy) and melanoma to minimize their  possible recurrence.

3.
Nanoscale Adv ; 6(3): 910-924, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298595

RESUMO

Natural antimicrobials have recently gained increasing interest over synthetic antimicrobials to overcome foodborne pathogens and food microbial contamination. Essential oils (EOs) obtained from Boswellia sacra resins (BO) were utilized for respiratory disorders, rheumatoid arthritis, malignant tumors, and viral infections. Like other EOs, the therapeutic potential of BO is hindered by its low solubility and bioavailability, poor stability, and high volatility. Several studies have shown excellent physicochemical properties and outstanding therapeutic capabilities of EOs encapsulated into various nanocarriers. This study extracted BO from B. sacra resins via hydrodistillation and encapsulated it into hydroxypropyl-beta-cyclodextrins (HPßCD) using the freeze-drying method. The developed inclusion complexes of BO (BO-ICs) had high encapsulation efficiency (96.79 ± 1.17%) and a polydispersity index of 0.1045 ± 0.0006. BO-ICs showed presumably spherical vesicles (38.5 to 59.9 nm) forming multiple agglomerations (136.9 to 336.8 nm), as determined by UHR-TEM. Also, the formation and stability of BO-ICs were investigated using DSC, FTIR, FE-SEM, UHR-TEM, 1H NMR, and 2D HNMR (NOESY). BO-ICs showed greater thermal stability (362.7 °C). Moreover, compared to free BO, a remarkable enhancement in the antimicrobial activities of BO-ICs was shown against three different bacteria: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. BO-ICs displayed significant antibacterial activity against Pseudomonas aeruginosa with an MIC90 of 3.93 mg mL-1 and an MIC50 of 0.57 mg mL-1. Also, BO-ICs showed an increase in BO activity against Escherichia coli with an MIC95 of 3.97 mg mL-1, compared to free BO, which failed to show an MIC95. Additionally, BO-ICs showed a more significant activity against Staphylococcus aureus with an MIC95 of 3.92 mg mL-1. BO encapsulation showed significantly improved antimicrobial activities owing to the better stability, bioavailability, and penetration ability imparted by encapsulation into HPßCD.

4.
Nanoscale Adv ; 4(24): 5233-5244, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540116

RESUMO

As the world's population ages, the incidence of Parkinson's disease (PD), the second most common neurological ailment, keeps increasing. It is estimated that 1% of the global population over the age of 60 has the disease. The continuous loss of dopaminergic neurons and the concomitant brain depletion of dopamine levels represent the hallmarks of PD. As a result, current PD therapies primarily target dopamine or its precursor (levodopa). Therapeutic approaches that aim to provide an exogenous source of levodopa or dopamine are hindered by their poor bioavailability and the blood-brain barrier. Nevertheless, the fabrication of many polymeric nanoparticles has been exploited to deliver several drugs inside the brain. In addition to a brief introduction of PD and its current therapeutic approaches, this review covers novel polymeric nanoparticulate drug delivery systems exploited lately for dopamine and levodopa replacement in PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...